Ubiquitin ligase switch in plant photomorphogenesis

نویسندگان

  • Alexandra Pokhilko
  • Jason A. Ramos
  • Hans Holtan
  • Don R. Maszle
  • Rajnish Khanna
  • Andrew J. Millar
چکیده

The E3 ubiquitin ligase COP1 (CONSTITUTIVE PHOTOMORPHOGENIC1) plays a key role in the repression of the plant photomorphogenic development in darkness. In the presence of light, COP1 is inactivated by a mechanismwhich is not completely understood. This leads to accumulation of COP1’s target transcription factors, which initiates photomorphogenesis, resulting in dramatic changes of the seedling’s physiology. Hereweuse amathematicalmodel to explore the possiblemechanismof COP1modulation upondark/ light transition in Arabidopsis thaliana based upon data for two COP1 target proteins: HY5 and HFR1, which play critical roles in photomorphogenesis. The main reactions in our model are the inactivation of COP1 by a proposed photoreceptor-related inhibitor I and interactions between COP1 and a CUL4 (CULLIN4)-based ligase. For building and verification of the model, we used the available published and our new data on the kinetics of HY5 and HFR1 together with the data on COP1 abundance. HY5 has been shown to accumulate at a slower rate than HFR1. To describe the observed differences in the timecourses of the ‘‘slow’’ target HY5 and the ‘‘fast’’ target HFR1, we hypothesize a switch between the activities of COP1 and CUL4 ligases upon dark/light transition, with COP1 being activemostly in darkness and CUL4 in light. Themodel predicts a bi-phasic kinetics of COP1 activity upon the exposure of plants to light, with its restoration after the initial decline and the following slow depletion of the total COP1 content. CUL4 activity is predicted to increase in the presence of light. We propose that the ubiquitin ligase switch is important for the complex regulation of multiple transcription factors during plants development. In addition, this provides a new mechanism for sensing the duration of light period, which is important for seasonal changes in plant development. & 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ubiquitin ligase switch in plant photomorphogenesis: A hypothesis

The E3 ubiquitin ligase COP1 (CONSTITUTIVE PHOTOMORPHOGENIC1) plays a key role in the repression of the plant photomorphogenic development in darkness. In the presence of light, COP1 is inactivated by a mechanism which is not completely understood. This leads to accumulation of COP1's target transcription factors, which initiates photomorphogenesis, resulting in dramatic changes of the seedling...

متن کامل

Arabidopsis CULLIN4 Forms an E3 Ubiquitin Ligase with RBX1 and the CDD Complex in Mediating Light Control of Development.

Repression of photomorphogenesis in Arabidopsis thaliana requires activity of the COP9 signalosome (CSN), CDD, and COP1 complexes, but how these three complexes work in concert to accomplish this important developmental switch has remained unknown. Here, we demonstrate that Arabidopsis CULLIN4 (CUL4) associates with the CDD complex and a common catalytic subunit to form an active E3 ubiquitin l...

متن کامل

Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8).

Arabidopsis COP1 is a negative regulator of photomorphogenesis, which targets HY5, a positive regulator of photomorphogenesis, for degradation via the proteasome pathway in the absence of light. COP1 and its interactive partner CIP8 both possess RING finger motifs, characteristic of some E3 ubiquitin ligases. Here we show that CIP8 promotes ubiquitin attachment to HY5 in E2-dependent fashion in...

متن کامل

The RING-Finger E3 Ubiquitin Ligase COP1 SUPPRESSOR1 Negatively Regulates COP1 Abundance in Maintaining COP1 Homeostasis in Dark-Grown Arabidopsis Seedlings.

CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) functions as an E3 ubiquitin ligase in both plants and animals. In dark-grown Arabidopsis thaliana seedlings, COP1 targets photomorphogenesis-promoting factors for degradation to repress photomorphogenesis. Little is known, however, about how COP1 itself is regulated. Here, we identify COP1 SUPPRESSOR1 (CSU1), a RING-finger E3 ubiquitin ligase, as a regulat...

متن کامل

Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness.

In many plants, photomorphogenesis is the default developmental program after seed germination, and provides the key features that allow adaptation to light. This program is actively repressed if germination occurs in the absence of light, through a mechanism dependent on the E3 ubiquitin ligase activity that is encoded in Arabidopsis by COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), which induces pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017